\documentclass[french]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{babel} \usepackage{threeparttable} \begin{document} \begin{center} \begin{threeparttable} \caption{Les angles biaisés ($\beta$) pour $\fam0 Mu(H)+X_2$ et $\fam0 Mu(H)+HX$~\tnote{a}} \begin{tabular}{rlcc}% ou tabularx, etc. \hline & & $\fam0 H(Mu)+F_2$ & $\fam0 H(Mu)+Cl_2$ \\ \hline & $\beta$(H) & $80,9^\circ\tnote{b}$ & $83,2^\circ$ \\ & $\beta$(Mu) & $86,7^\circ$ & $87,7^\circ$ \\ \hline \end{tabular} \begin{tablenotes} \item[a] pour la réaction d'abstraction, $\fam0 Mu+HX \rightarrow MuH+X$. \item[b] 1 degré${} = \pi/180$ radians. \end{tablenotes} \end{threeparttable} \end{center} \end{document}